In this work, we aim to develop energy-stable parametric finite element approximations for a sharp-interface model with strong surface energy anisotropy, which is derived from the first variation of an energy functional composed of film/vapor interfacial energy, substrate energy, and regularized Willmore energy. By introducing two geometric relations, we innovatively establish an equivalent regularized sharp-interface model and further construct an energy-stable parametric finite element algorithm for this equivalent model. We provide a detailed proof of the energy stability of the numerical scheme, addressing a gap in the relevant theory. Additionally, we develop another structure-preserving parametric finite element scheme that can preserve both area conservation and energy stability. Finally, we present several numerical simulations to show accuracy and efficiency as well as some structure-preserving properties of the proposed numerical methods. More importantly, extensive numerical simulations reveal that our schemes provide better mesh quality and are more suitable for long-term computations.
翻译:暂无翻译