Moist thermodynamics is a fundamental driver of atmospheric dynamics across all scales, making accurate modeling of these processes essential for reliable weather forecasts and climate change projections. However, atmospheric models often make a variety of inconsistent approximations in representing moist thermodynamics. These inconsistencies can introduce spurious sources and sinks of energy, potentially compromising the integrity of the models. Here, we present a thermodynamically consistent and structure preserving formulation of the moist compressible Euler equations. When discretised with a summation by parts method, our spatial discretisation conserves: mass, water, entropy, and energy. These properties are achieved by discretising a skew symmetric form of the moist compressible Euler equations, using entropy as a prognostic variable, and the summation-by-parts property of discrete derivative operators. Additionally, we derive a discontinuous Galerkin spectral element method with energy and tracer variance stable numerical fluxes, and experimentally verify our theoretical results through numerical simulations.
翻译:暂无翻译