Person re-identification (Re-ID) has achieved great success in the supervised scenario. However, it is difficult to directly transfer the supervised model to arbitrary unseen domains due to the model overfitting to the seen source domains. In this paper, we aim to tackle the generalizable multi-source person Re-ID task (i.e., there are multiple available source domains, and the testing domain is unseen during training) from the data augmentation perspective, thus we put forward a novel method, termed MixNorm, which consists of domain-aware mix-normalization (DMN) and domain-ware center regularization (DCR). Different from the conventional data augmentation, the proposed domain-aware mix-normalization to enhance the diversity of features during training from the normalization view of the neural network, which can effectively alleviate the model overfitting to the source domains, so as to boost the generalization capability of the model in the unseen domain. To better learn the domain-invariant model, we further develop the domain-aware center regularization to better map the produced diverse features into the same space. Extensive experiments on multiple benchmark datasets validate the effectiveness of the proposed method and show that the proposed method can outperform the state-of-the-art methods. Besides, further analysis also reveals the superiority of the proposed method.


翻译:个人再识别(Re-ID)在受监督的情景中取得了巨大成功,然而,由于该模型与可见源域相重叠,很难直接将受监督的模式转移到任意的看不见领域。在本文件中,我们的目标是从数据增强角度处理一般可实现的多源人再识别任务(即,有多个源域,培训期间看不到测试领域),从而从数据增强的角度出发,有效地减轻模型过度适应源域的模式,从而增强模型在无形领域的总体化能力。为了更好地了解域变异模式,我们进一步开发了域觉中心正规化中心,以更好地将生成的不同特征映射到同一空间。与常规数据增强、拟议的域觉混合组合统一化相比,以在培训期间从神经网络的正常化观点出发,加强特征多样性。此外,还进行了广泛的实验,以确认拟议优势分析方法的有效性。此外,还展示了拟议的方法,并展示了拟议采用的方法。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2021年10月22日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员