Given a set of $n$ sites from $\mathbb{R}^d$, each having some positive weight factor, the Multiplicative Weighted Voronoi Diagram is a subdivision of space that associates each cell to the site whose weighted Euclidean distance is minimal for its points. We give an approximation algorithm that outputs a subdivision such that the weighted distance of a point with respect to the associated site is at most $(1+\varepsilon)$ times the minimum weighted distance, for any fixed parameter $\varepsilon \in (0,1)$. The diagram size is ${\cal O}(n \log(1/\varepsilon)/\varepsilon^{d-1})$ and the construction time is within a factor ${\cal O} (1/\varepsilon^{(d+1)d} +\log(n)/\varepsilon^{d+2} )$ of the output size. As a by-product, we obtain ${\cal O}(\log( n/\varepsilon))$ point-location query time in the subdivision. The key ingredients of the proposed method are the study of convex regions that we call cores, an adaptive refinement algorithm to obtain small output size, and a combination of Semi-Separated Pair Decompositions and conic space partitions to obtain efficient runtime.
翻译:根据一套由$mathbb{R ⁇ d$组成的美元站点,每个站点都有一定的正重因数,多倍加权Voronoi Diagram是一个小空间的分组,它将每个单元格与加权欧几里德距离对其点来说最小的站点连接起来。我们给出了一个近似算法,输出一个小点的加权距离是任何固定参数的最小加权距离的($1 ⁇ varepsilon)乘以最小加权距离的(0,1美元)。图表的大小是$O}(n\log(1/ varepsilon)/\\ varepsilon ⁇ d-1},而构建时间是在一个因子值($O} (1/\\ varepsilon} (d+1d} ⁇ log) 内,因此,相对于任何固定参数的加权距离,我们得到了$( n/ varepslon) 。图表的大小是$(n/ varepslon) /\ dlational=$, 美元,而构建时段的轨道大小是Sqalalalalationalislationalalalisalisal deal maisgration maisal max max maxxxx 核心的计算,一个拟议的缩定调序段段段段数。