The algorithms used for the optimal management of an ambulance fleet require an accurate description of the spatio-temporal evolution of the emergency events. In the last years, several authors have proposed sophisticated statistical approaches to forecast ambulance dispatches, typically modelling the data as a point pattern occurring on a planar region. Nevertheless, ambulance interventions can be more appropriately modelled as a realisation of a point process occurring on a linear network. The constrained spatial domain raises specific challenges and unique methodological problems that cannot be ignored when developing a proper statistical approach. Hence, this paper proposes a spatio-temporal model to analyse ambulance dispatches focusing on the interventions that occurred in the road network of Milan (Italy) from 2015 to 2017. We adopt a non-separable first-order intensity function with spatial and temporal terms. The temporal dimension is estimated semi-parametrically using a Poisson regression model, while the spatial dimension is estimated non-parametrically using a network kernel function. A set of weights is included in the spatial term to capture space-time interactions, inducing non-separability in the intensity function. A series of tests show that our approach successfully models the ambulance interventions and captures the space-time patterns more accurately than planar or separable point process models.
翻译:暂无翻译