The paper introduces a reduced order model (ROM) for numerical integration of a dynamical system which depends on multiple parameters. The ROM is a projection of the dynamical system on a low dimensional space that is both problem-dependent and parameter-specific. The ROM exploits compressed tensor formats to find a low rank representation for a sample of high-fidelity snapshots of the system state. This tensorial representation provides ROM with an orthogonal basis in a universal space of all snapshots and encodes information about the state variation in parameter domain. During the online phase and for any incoming parameter, this information is used to find a reduced basis that spans a parameter-specific subspace in the universal space. The computational cost of the online phase then depends only on tensor compression ranks, but not on space or time resolution of high-fidelity computations. Moreover, certain compressed tensor formats enable to avoid the adverse effect of parameter space dimension on the online costs (known as the curse of dimension). The analysis of the approach includes an estimate for the representation power of the acquired ROM basis. We illustrate the performance and prediction properties of the ROM with several numerical experiments, where tensorial ROM's complexity and accuracy is compared to those of conventional POD-ROM.


翻译:本文采用了一个简化顺序模型(ROM),用于对取决于多个参数的动态系统进行数字整合。ROM是动态系统对低维空间的预测,该低维空间既取决于问题又有特定参数。ROM利用压缩高压格式,为系统状态的高度忠诚快照样本找到低级代表器。该演示表提供了在通用空间所有快照和关于参数域差异的信息编码通用空间的ROM的正方位基础。在在线阶段和任何输入参数中,该信息用于寻找一个缩小基础,跨越通用空间中一个特定参数子空间。在线阶段的计算成本随后仅取决于压强压缩等级,而不是高忠诚度计算的空间或时间分辨率。此外,某些缩压格式能够避免参数空间维度对在线成本的不利影响(称为维度的诅咒)。该方法的分析包括了对已获得的ROM的表达力的估计。我们用数个数字性实验来说明这些测试的性能和预测性能和精确度,其中将激光存储器的精确度与若干数字性实验相比。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
IBM《人工智能白皮书》(2019版),12页PDF,IBM编
专知会员服务
20+阅读 · 2019年11月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
ICML2019:Google和Facebook在推进哪些方向?
专知
5+阅读 · 2019年6月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【泡泡一分钟】一种实用且高效的多视图匹配方法
泡泡机器人SLAM
6+阅读 · 2018年11月19日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2018年10月25日
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
Arxiv
8+阅读 · 2018年5月15日
Arxiv
9+阅读 · 2018年3月28日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
ICML2019:Google和Facebook在推进哪些方向?
专知
5+阅读 · 2019年6月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【泡泡一分钟】一种实用且高效的多视图匹配方法
泡泡机器人SLAM
6+阅读 · 2018年11月19日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员