In this work we combine ideas from multi-index Monte Carlo and ensemble Kalman filtering (EnKF) to produce a highly efficient filtering method called multi-index EnKF (MIEnKF). MIEnKF is based on independent samples of four-coupled EnKF estimators on a multi-index hierarchy of resolution levels, and it may be viewed as an extension of the multilevel EnKF (MLEnKF) method developed by the same authors in 2020. Multi-index here refers to a two-index method, consisting of a hierarchy of EnKF estimators that are coupled in two degrees of freedom: time discretization and ensemble size. Under certain assumptions, when strong coupling between solutions on neighboring numerical resolutions is attainable, the MIEnKF method is proven to be more tractable than EnKF and MLEnKF. Said efficiency gains are also verified numerically in a series of test problems.
翻译:在这项工作中,我们结合了多指数蒙特卡洛和共通卡曼过滤(EnKF)的构想,以产生一种称为多指数EnKF(MIEnKF)的高效过滤方法。 MIEnKF基于四种混合的 EnKF 测量器的独立样本,这些样本在分辨率层次的多指数层次上相互交织,这可以被视为同一位作者在2020年开发的多层次EnKF(MLEnKF)方法的延伸。 多指数这里指的是一种双指数方法,由EnKF的测算器的等级组成,在两种自由度(时间分解和共通尺寸)中相互结合。 在某些假设下,当能够将相邻数字分辨率的解决方案进行强有力的组合时,MIEnKF 方法被证明比 EnKF 和 MLEKF 。 在一系列测试问题中,效率收益也被以数字方式验证。