Conversational machine reading (CMR) tools have seen a rapid progress in the recent past. The current existing tools rely on the supervised learning technique which require labeled dataset for their training. The supervised technique necessitates that for every new rule text, a manually labeled dataset must be created. This is tedious and error prone. This paper introduces and demonstrates how unsupervised learning technique can be applied in the development of CMR. Specifically, we demonstrate how unsupervised learning can be used in rule extraction and entailment modules of CMR. Compared to the current best CMR tool, our developed framework reports 3.3% improvement in micro averaged accuracy and 1.4 % improvement in macro averaged accuracy.
翻译:最近,对口机阅读工具(CMR)取得了快速进展。 现有的工具依靠监督学习技术, 需要贴上标签的数据集来进行培训。 监督技术需要为每一个新规则文本创建人工标签的数据集。 这是乏味和容易出错的。 本文介绍并演示了如何在CMR的发展中应用未经监督的学习技术。 具体地说, 我们展示了如何在CMR的规则提取和要求模块中使用不受监督的学习方法。 与目前最好的CMR工具相比, 我们开发的框架报告微平均值精度提高了3.3%,宏观平均精度提高了1.4%。