Multi-view shape reconstruction has achieved impressive progresses thanks to the latest advances in neural implicit surface rendering. However, existing methods based on signed distance function (SDF) are limited to closed surfaces, failing to reconstruct a wide range of real-world objects that contain open-surface structures. In this work, we introduce a new neural rendering framework, coded NeUDF, that can reconstruct surfaces with arbitrary topologies solely from multi-view supervision. To gain the flexibility of representing arbitrary surfaces, NeUDF leverages the unsigned distance function (UDF) as surface representation. While a naive extension of an SDF-based neural renderer cannot scale to UDF, we propose two new formulations of weight function specially tailored for UDF-based volume rendering. Furthermore, to cope with open surface rendering, where the in/out test is no longer valid, we present a dedicated normal regularization strategy to resolve the surface orientation ambiguity. We extensively evaluate our method over a number of challenging datasets, including DTU}, MGN, and Deep Fashion 3D. Experimental results demonstrate that nEudf can significantly outperform the state-of-the-art method in the task of multi-view surface reconstruction, especially for complex shapes with open boundaries.
翻译:多视角形状重建在最新的神经隐式表面渲染技术的帮助下取得了令人瞩目的进展。然而,现有的基于有符号距离函数(SDF)的方法仅限于闭合表面,无法重建包含开放表面结构的广泛真实世界对象。在这项工作中,我们介绍了一种新的神经渲染框架,命名为NeUDF,可以仅依靠多视角监督来重建具有任意拓扑形态的表面。为了获得表示任意表面的灵活性,NeUDF利用未签名距离函数(UDF)作为表面表示。虽然SDF-based的神经渲染器的朴素扩展无法扩展到UDF,但我们提出了两种针对UDF-based体积渲染特别量身定制的权重函数形式。此外,为了应对开放表面渲染,其中内外测试不再有效,我们提出了一种专门的法线正则化策略来解决表面方向的歧义问题。我们在许多具有挑战性的数据集,包括DTU、MGN和Deep Fashion 3D上广泛评估了我们的方法。实验结果表明,nEudf可以显著优于多视角表面重建任务中的最新方法,特别适用于具有开放边界的复杂形状。