Let $A$ be an $n\times n$ real matrix. The piecewise linear equation system $z-A\vert z\vert =b$ is called an absolute value equation (AVE). It is well-known to be equivalent to the linear complementarity problem. Unique solvability of the AVE is known to be characterized in terms of a generalized Perron root called the sign-real spectral radius of $A$. For mere, possibly non-unique, solvability no such characterization exists. We close this gap in the theory. That is, we define the concept of the aligned spectrum of $A$ and prove, under some mild genericity assumptions on $A$, that the mapping degree of the piecewise linear function $F_A:\mathbb{R}^n\to\mathbb{R}^n\,, z\mapsto z-A\lvert z\rvert$ is congruent to $(k+1)\mod 2$, where $k$ is the number of aligned values of $A$ which are larger than $1$. We also derive an exact -- but more technical -- formula for the degree of $F_A$ in terms of the aligned spectrum.
翻译:$A 是一个 $n\ timen n n$ 真正的矩阵。 元素线性方程系统 $z- A\ vert z\ vert = b$ 被称为绝对值方程 $z- Avert z\ vert = b$ 。 众所周知, AVE 的独有溶解性以一个通用的 Perron 根根根为, 称为 $A 的符号- 真实光谱半径 。 仅仅, 可能是非单数, 不存在这样的特性。 我们缩小了理论中的这一差距。 也就是说, 我们定义了美元对齐值的组合频谱范围概念, 并且证明, 在美元的某些轻微的通用假设下, 美元为 $A:\\ mathb{ R\\ n\\\\\\ t\ mathb{ R\\ n\, z\ mapto z- Alevert z\ rvert$ 和 $ (k+1\ most 2) 。 $, $ 美元为美元 的校准值数。 我们用一个精确的公式来得出 $- a lax_ a lax lax 的公式。