A hybrid observer is described for estimating the state of a system of the form dot x=Ax, y_i=C_ix, i=1,...,m. The system's state x is simultaneously estimated by m agents assuming agent i senses y_i and receives appropriately defined data from its neighbors. Neighbor relations are characterized by a time-varying directed graph N(t). Agent i updates its estimate x_i of x at event times t_{i1},t_{i2} ... using a local continuous-time linear observer and a local parameter estimator which iterates q times during each event time interval [t_{i(s-1)},t_{is}), s>=1, to obtain an estimate of x(t_{is}). Subject to the assumptions that N(t) is strongly connected, and the system is jointly observable, it is possible to design parameters so that x_i converges to x with a pre-assigned rate. This result holds when agents communicate asynchronously with the assumption that N(t) changes slowly. Exponential convergence is also assured if the event time sequence of the agents are slightly different, although only if the system being observed is exponentially stable; this limitation however, is a robustness issue shared by all open loop state estimators with small modeling errors. The result also holds facing abrupt changes in the number of vertices and arcs in the inter-agent communication graph upon which the algorithm depends.


翻译:混合观察者被描述为用于估算窗体 dot x = Ax, y_ i= Cx, i= 1, i= 1 的系统状态 。 系统状态 x 由假定 i 感应 y_ i 和从邻居处获取适当定义的数据的代理人同时估算。 邻接关系具有时间变化方向图N( t) 的特征。 Agent i i 使用本地连续时间线性观察者 和本地参数估计器 来估计每个事件时间间隔[ t ⁇ i (s-1}, t ⁇ is} 的 的 q 时间间隔时间系统状态 。 在假设N (t) 强烈连接, 且系统可共同观察的情况下, i i 可以设计参数, 这样 x_ i 与 x 发生时间变化时的预指派率 。 当代理商与假设 N (t) 缓慢变化时, 将保持同步 Qenticental 趋同时间轴的对比值, 也能够确定 x(tralal) raltial ral ral ral ral ral ral ral ral recks 。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员