This paper studies secrecy-capacity of an $n$-dimensional Gaussian wiretap channel under a peak-power constraint. This work determines the largest peak-power constraint $\bar{\mathsf{R}}_n$ such that an input distribution uniformly distributed on a single sphere is optimal; this regime is termed the low amplitude regime. The asymptotic of $\bar{\mathsf{R}}_n$ as $n$ goes to infinity is completely characterized as a function of noise variance at both receivers. Moreover, the secrecy-capacity is also characterized in a form amenable for computation. Several numerical examples are provided, such as the example of the secrecy-capacity-achieving distribution beyond the low amplitude regime. Furthermore, for the scalar case $(n=1)$ we show that the secrecy-capacity-achieving input distribution is discrete with finitely many points at most of the order of $\frac{\mathsf{R}^2}{\sigma_1^2}$, where $\sigma_1^2$ is the variance of the Gaussian noise over the legitimate channel.
翻译:本文根据峰值功率限制, 研究一个以美元为维面的高斯窃听频道的保密能力。 这项工作决定了最大峰值功率限制 $\bar\ mathsf{R ⁇ n$, 在一个单一领域统一分布的输入能力分配是最佳的; 这个制度被称为低振幅制度。 以美元到无限度为单位的默认值, 被完全定性为两个接收器的噪音差异函数。 此外, 保密能力也以可计算的形式定性。 提供了几个数字例子, 例如, 在低振幅制度之外, 的保密能力- 实现分配的示例。 此外, 对于标度 $( n=1) 的情况, 我们显示, 保密能力- 实现输入分配的离散不开很多点, 大部分为 $\fracthfsf{R\2unsigma_ 1 ⁇ 2} 。 其中, $\ sigma_ 1. 2美元是合法频道的噪音的差异 。