This thesis analyzes the challenging problem of Image Deblurring based on classical theorems and state-of-art methods proposed in recent years. By spectral analysis we mathematically show the effective of spectral regularization methods, and point out the linking between the spectral filtering result and the solution of the regularization optimization objective. For ill-posed problems like image deblurring, the optimization objective contains a regularization term (also called the regularization functional) that encodes our prior knowledge into the solution. We demonstrate how to craft a regularization term by hand using the idea of maximum a posterior estimation. Then, we point out the limitations of such regularization-based methods, and step into the neural-network based methods. Based on the idea of Wasserstein generative adversarial models, we can train a CNN to learn the regularization functional. Such data-driven approaches are able to capture the complexity, which may not be analytically modellable. Besides, in recent years with the improvement of architectures, the network has been able to output an image closely approximating the ground truth given the blurry observation. The Generative Adversarial Network (GAN) works on this Image-to-Image translation idea. We analyze the DeblurGAN-v2 method proposed by Orest Kupyn et al. [14] in 2019 based on numerical tests. And, based on the experimental results and our knowledge, we put forward some suggestions for improvement on this method.


翻译:这篇论文分析了基于古典理论和近年提出的最先进方法的图像Deblurring挑战性问题。 通过光谱分析, 我们数学地展示了光谱正规化方法的有效性, 并指出了光谱过滤结果与正规化优化目标解决方案之间的联系。 对于像图像模糊这样的错误问题, 优化目标包含一个正规化术语( 也称为正规化功能 ), 将我们先前的知识编码到解决方案中。 我们展示了如何用手来设计一个正规化术语。 我们演示了如何使用最高事后估计理念来亲手设计一个正规化术语。 然后, 我们用光谱分析方法指出这些基于常规的方法的局限性, 并进入基于神经网络的方法。 根据瓦塞斯特斯坦基因对抗性对抗模型的想法, 我们可以训练CNN来学习正规化功能。 这种数据驱动方法可以捕捉复杂性, 而这些复杂性也许不是分析模型。 此外, 近年来, 网络能够通过模糊的观察, 能够输出一个非常接近地面真相的图像。 我们用GAdversari2 和SDBA-A-A-A-A-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
38+阅读 · 2020年9月6日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
46+阅读 · 2020年7月4日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Generative Adversarial Networks: A Survey and Taxonomy
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Arxiv
10+阅读 · 2018年3月23日
Arxiv
10+阅读 · 2018年2月17日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员