In randomized controlled trials (RCTs), treatment is often assigned by stratified randomization. I show that among all stratified randomization schemes which treat all units with probability one half, a certain matched-pair design achieves the maximum statistical precision for estimating the average treatment effect (ATE). In an important special case, the optimal design pairs units according to the baseline outcome. In a simulation study based on datasets from 10 RCTs, this design lowers the standard error for the estimator of the ATE by 10% on average, and by up to 34%, relative to the original designs.
翻译:在随机控制的试验中,治疗往往通过分层随机处理来分配。我显示,在所有分层随机处理方法中,所有处理单位的概率为一半的分层随机处理方法中,某种配对型设计在估计平均治疗效果时达到最高统计精确度。在一个重要的特殊案例中,根据基准结果,最佳设计对等单位。在根据10个RCT数据集进行的模拟研究中,这一设计将ATE估计器的标准误差平均降低10%,与原设计相比,最高降低34%。