Randomized block factorial experiments are widely used in industrial engineering, clinical trials, and social science. Researchers often use a linear model and analysis of covariance to analyze experimental results; however, limited studies have addressed the validity and robustness of the resulting inferences because assumptions for a linear model might not be justified by randomization in randomized block factorial experiments. In this paper, we establish a new finite population joint central limit theorem for usual (unadjusted) factorial effect estimators in randomized block $2^K$ factorial experiments. Our theorem is obtained under a randomization-based inference framework, making use of an extension of the vector form of the Wald--Wolfowitz--Hoeffding theorem for a linear rank statistic. It is robust to model misspecification, numbers of blocks, block sizes, and propensity scores across blocks. To improve the estimation and inference efficiency, we propose four covariate adjustment methods. We show that under mild conditions, the resulting covariate-adjusted factorial effect estimators are consistent, jointly asymptotically normal, and generally more efficient than the unadjusted estimator. In addition, we propose Neyman-type conservative estimators for the asymptotic covariances to facilitate valid inferences. Simulation studies and a clinical trial data analysis demonstrate the benefits of the covariate adjustment methods.
翻译:在工业工程、临床试验和社会科学中广泛使用随机随机的区块系数实验。研究人员经常使用线性模型和分析共变模型来分析实验结果;然而,有限的研究处理了由此得出的推断的有效性和稳健性,因为在随机的区块系数实验中,对线性模型的假设可能没有随机性的合理性。在本文中,我们为通常(未经调整的)因数效应估计器为(未经调整的)因数效果估计器设置了新的有限人口联合中央值限制。在随机的区块 2 ⁇ K$因数实验中,我们用一个基于随机化的推断框架来获取我们的正数,利用Wald-Wolfowitz-Hoifowitz-Hoffizing 线形矢量模型的扩展来进行线性等级统计。我们为各区块间偏差、区块数目、区块大小和运动量计建模模型而建立了新的有限人口联合中央值。为了提高估计和推算效率,我们建议了四种共变法调整方法。我们表明,在温性条件下,由此得出的因数调和因数调整的因数影响估计值估计值估计值估计值估计结果的测算结果是一致的,我们提出了正常的稳性分析的稳性分析结果。我们比较性调整的调和比较性分析结果的调和比较性研究的调和比较性研究的调和比较性分析结果的调和比较性研究,我们比较性研究显示我们比较性比较性比较性研究的调制的调。我们比较性研究是比较性比较性研究的比较性研究的调制的调制。我们比较性地提议的调制的调制的调制的调制的调制的调制的调制的调制。