We introduce a Fourier-based fast algorithm for Gaussian process regression. It approximates a translationally-invariant covariance kernel by complex exponentials on an equispaced Cartesian frequency grid of $M$ nodes. This results in a weight-space $M\times M$ system matrix with Toeplitz structure, which can thus be applied to a vector in ${\mathcal O}(M \log{M})$ operations via the fast Fourier transform (FFT), independent of the number of data points $N$. The linear system can be set up in ${\mathcal O}(N + M \log{M})$ operations using nonuniform FFTs. This enables efficient massive-scale regression via an iterative solver, even for kernels with fat-tailed spectral densities (large $M$). We include a rigorous error analysis of the kernel approximation, the resulting accuracy (relative to "exact" GP regression), and the condition number. Numerical experiments for squared-exponential and Mat\'ern kernels in one, two and three dimensions often show 1-2 orders of magnitude acceleration over state-of-the-art rank-structured solvers at comparable accuracy. Our method allows 2D Mat\'ern-${\small \frac{3}{2}}$ regression from $N=10^9$ data points to be performed in 2 minutes on a standard desktop, with posterior mean accuracy $10^{-3}$. This opens up spatial statistics applications 100 times larger than previously possible.
翻译:我们为高斯进程回归引入了基于 Fleier 的快速算法。 它与一个由复合指数组成的翻译异差共变量内核相近, 在一个以$M美元为节点的宽度卡通频率网格上使用复杂的指数。 这导致一个重量- 空间 $M\ time M$ 系统矩阵, 带有托普利茨结构, 这样可以应用到一个以$#mathcal O} (M\log{M}) 的矢量上, 通过快速的 Fleier 转换( FFT) 操作, 不受数据点数 $N$。 线性系统可以在 $#mathcal O} (N+ M\ log{M} ) 中以复合指数设置。 使用非统一的 FFFFT 的操作, 这样就可以通过一个迭接式解算器, 即使是对有脂肪连成光谱光谱频度的内层( 大为$ $ $ mM} (M\ log{M} $ m} 运行的精确度操作, 。 我们的平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面的两次实验, 显示平面平面平面平面平面平面平面平面平面平面平面平面平面的两次。