We study differentially private (DP) algorithms for smooth stochastic minimax optimization, with stochastic minimization as a byproduct. The holy grail of these settings is to guarantee the optimal trade-off between the privacy and the excess population loss, using an algorithm with a linear time-complexity in the number of training samples. We provide a general framework for solving differentially private stochastic minimax optimization (DP-SMO) problems, which enables the practitioners to bring their own base optimization algorithm and use it as a black-box to obtain the near-optimal privacy-loss trade-off. Our framework is inspired from the recently proposed Phased-ERM method [22] for nonsmooth differentially private stochastic convex optimization (DP-SCO), which exploits the stability of the empirical risk minimization (ERM) for the privacy guarantee. The flexibility of our approach enables us to sidestep the requirement that the base algorithm needs to have bounded sensitivity, and allows the use of sophisticated variance-reduced accelerated methods to achieve near-linear time-complexity. To the best of our knowledge, these are the first near-linear time algorithms with near-optimal guarantees on the population duality gap for smooth DP-SMO, when the objective is (strongly-)convex--(strongly-)concave. Additionally, based on our flexible framework, we enrich the family of near-linear time algorithms for smooth DP-SCO with the near-optimal privacy-loss trade-off.


翻译:我们研究的私人(DP)算法有差异性,用于平滑的随机微型最大优化,将随机最小化作为副产品。这些环境的神圣弱点是保证隐私和超人口损失之间的最佳权衡,使用在培训样本数量上具有线性时间复杂性的算法(DP-SMO)解决个人小型最大优化(DP-SMO)问题的一般框架。我们的方法的灵活性使我们能够回避基本算法需要具有约束性灵活性的要求,并允许使用复杂的差异加速法实现近于最佳的隐私损失交易。我们的框架来自最近提出的非移动性私隐和超人口损失的SD-ERM方法[22] 的启发,用于非移动性私隐最小化的私人孔雀优化(DP-SCO),这是利用实验性风险最小化最小化(ERM)的稳定性来保障隐私。我们方法的灵活性使我们能够回避基本算法需要具有约束性灵活性的要求,并允许使用复杂的差异加速法实现近为近线性时间可比性的近线性框架。当我们的知识接近目标值时,最接近于双轨的IM-最稳定的家庭-最稳定的亚值-最接近的伸缩的伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-伸缩-

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员