Studies have shown that the effect an exposure may have on a disease can vary for different subtypes of the same disease. However, existing approaches to estimate and compare these effects largely overlook causality. In this paper, we study the effect smoking may have on having colorectal cancer subtypes defined by a trait known as microsatellite instability (MSI). We use principal stratification to propose an alternative causal estimand, the Subtype-Free Average Causal Effect (SF-ACE). The SF-ACE is the causal effect of the exposure among those who would be free from other disease subtypes under any exposure level. We study non-parametric identification of the SF-ACE, and discuss different monotonicity assumptions, which are more nuanced than in the standard setting. As is often the case with principal stratum effects, the assumptions underlying the identification of the SF-ACE from the data are untestable and can be too strong. Therefore, we also develop sensitivity analysis methods that relax these assumptions. We present three different estimators, including a doubly-robust estimator, for the SF-ACE. We implement our methodology for data from two large cohorts to study the heterogeneity in the causal effect of smoking on colorectal cancer with respect to MSI subtypes.
翻译:研究显示,接触对同一疾病不同亚型的影响可能不同,但现有估计和比较这些影响的方法在很大程度上忽略了因果关系。在本文件中,我们研究了吸烟对由微型卫星不稳定特征(MSI)定义的直肠癌亚型的影响。我们使用主要分层来提出一种因果估计值,即亚型无平均因果关系(SF-ACE)的替代值。SF-ACE是那些在任何接触水平下不受其他疾病亚型影响的人的接触的因果关系。我们研究SF-ACE的非参数识别,并讨论不同的单一性假设,这些假设比标准设置中更为细微。我们通常使用主要分层效应的情况是,从数据中确定SF-ACE的假设是无法检验的,而且可能过于强烈。因此,我们还开发了能够放松这些假设的敏感性分析方法。我们提出了三种不同的估测器,其中包括对SF-AC的不单位值进行分级识别,并讨论不同的单项假设,这些假设比标准设置得更细。我们用对标准设置的单项假设方法对CSF-AC的大规模研究采用对SF-A型系统对结果进行大的统计研究。