We propose a doubly robust approach to characterizing treatment effect heterogeneity in observational studies. We develop a frequentist inferential procedure that utilizes posterior distributions for both the propensity score and outcome regression models to provide valid inference on the conditional average treatment effect even when high-dimensional or nonparametric models are used. We show that our approach leads to conservative inference in finite samples or under model misspecification, and provides a consistent variance estimator when both models are correctly specified. In simulations, we illustrate the utility of these results in difficult settings such as high-dimensional covariate spaces or highly flexible models for the propensity score and outcome regression. Lastly, we analyze environmental exposure data from NHANES to identify how the effects of these exposures vary by subject-level characteristics.
翻译:我们提出了一种双重的稳健方法,在观察研究中确定治疗效果差异性。我们开发了一种常态推论程序,在偏差分和结果回归模型中使用后方分布法,为有条件平均治疗效应提供有效的推论,即使使用了高维或非参数模型。我们表明,我们的方法导致在有限样本中或模型偏差中进行保守推论,并在正确指定两个模型时提供一致的差异估计值。在模拟中,我们展示了这些结果在高维共变空间等困难环境中的效用,或者为偏差分和结果回归提供高度灵活的模型。最后,我们分析了NHANES的环境暴露数据,以确定这些暴露效应如何因主题特性而变化。