Neural Networks (NNs) have been successfully employed to represent the state evolution of complex dynamical systems. Such models, referred to as NN dynamic models (NNDMs), use iterative noisy predictions of NN to estimate a distribution of system trajectories over time. Despite their accuracy, safety analysis of NNDMs is known to be a challenging problem and remains largely unexplored. To address this issue, in this paper, we introduce a method of providing safety guarantees for NNDMs. Our approach is based on stochastic barrier functions, whose relation with safety are analogous to that of Lyapunov functions with stability. We first show a method of synthesizing stochastic barrier functions for NNDMs via a convex optimization problem, which in turn provides a lower bound on the system's safety probability. A key step in our method is the employment of the recent convex approximation results for NNs to find piece-wise linear bounds, which allow the formulation of the barrier function synthesis problem as a sum-of-squares optimization program. If the obtained safety probability is above the desired threshold, the system is certified. Otherwise, we introduce a method of generating controls for the system that robustly maximizes the safety probability in a minimally-invasive manner. We exploit the convexity property of the barrier function to formulate the optimal control synthesis problem as a linear program. Experimental results illustrate the efficacy of the method. Namely, they show that the method can scale to multi-dimensional NNDMs with multiple layers and hundreds of neurons per layer, and that the controller can significantly improve the safety probability.
翻译:神经网络(NNS)已被成功用于代表复杂动态系统的状态演变。这些模型被称为NNN动态模型(NNDDMs),使用NNN的迭代噪音预测来估计系统轨迹的分布。尽管这些模型的准确性,但NNDMS的安全分析已知是一个具有挑战性的问题,而且基本上尚未探索。为了解决这一问题,我们在本文件中引入了一个为NNDMS提供安全保障的方法。我们的方法基于随机屏障功能,这些功能与Lyapunov的稳定性功能类似。我们首先展示了NNDMS的迭代隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐, 以极隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐隐,, 利用最隐隐隐隐隐隐隐隐隐隐隐隐隐隐的系统, 以自我的自我生成的自我生成的自我生成的自我的自我生成的自我, 。