Features play an important role in various visual tasks, especially in visual place recognition applied in perceptual changing environments. In this paper, we address the challenges of place recognition due to dynamics and confusable patterns by proposing a discriminative and semantic feature selection network, dubbed as DSFeat. Supervised by both semantic information and attention mechanism, we can estimate pixel-wise stability of features, indicating the probability of a static and stable region from which features are extracted, and then select features that are insensitive to dynamic interference and distinguishable to be correctly matched. The designed feature selection model is evaluated in place recognition and SLAM system in several public datasets with varying appearances and viewpoints. Experimental results conclude that the effectiveness of the proposed method. It should be noticed that our proposal can be readily pluggable into any feature-based SLAM system.


翻译:地物在各种视觉任务中起着重要作用,特别是在感知变化环境中应用的视觉定位识别方面。在本文件中,我们通过提出一个称为DSFeat的歧视性和语义性特征选择网络来解决由于动态和可变模式而产生的地点识别挑战。在语义和注意力机制的监督下,我们可以估计地物的像素稳定性,表明从其中提取地物的静态和稳定区域的可能性,然后选择对动态干扰不敏感的、无法正确匹配的特征。设计地物选择模型在几个外观和观点不同的公共数据集中以定位和SLAM系统对地物识别和SLAM系统进行评估。实验结果得出结论,拟议方法的有效性可以很容易地插入任何基于地物的SLM系统。应该注意到,我们的建议可以很容易被插入任何基于地物的SLM系统。

0
下载
关闭预览

相关内容

特征选择( Feature Selection )也称特征子集选择( Feature Subset Selection , FSS ),或属性选择( Attribute Selection )。是指从已有的M个特征(Feature)中选择N个特征使得系统的特定指标最优化,是从原始特征中选择出一些最有效特征以降低数据集维度的过程,是提高学习算法性能的一个重要手段,也是模式识别中关键的数据预处理步骤。对于一个学习算法来说,好的学习样本是训练模型的关键。
专知会员服务
19+阅读 · 2020年12月11日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
109+阅读 · 2020年3月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IEEE2018|An Accurate and Real-time 3D Tracking System for Robots
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
0+阅读 · 2021年5月10日
VIP会员
相关VIP内容
相关资讯
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IEEE2018|An Accurate and Real-time 3D Tracking System for Robots
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员