A central component of rational behavior is logical inference: the process of determining which conclusions follow from a set of premises. Psychologists have documented several ways in which humans' inferences deviate from the rules of logic. Do language models, which are trained on text generated by humans, replicate these biases, or are they able to overcome them? Focusing on the case of syllogisms -- inferences from two simple premises, which have been studied extensively in psychology -- we show that larger models are more logical than smaller ones, and also more logical than humans. At the same time, even the largest models make systematic errors, some of which mirror human reasoning biases such as ordering effects and logical fallacies. Overall, we find that language models mimic the human biases included in their training data, but are able to overcome them in some cases.
翻译:暂无翻译