An $n$-vertex $m$-edge graph is \emph{$k$-vertex connected} if it cannot be disconnected by deleting less than $k$ vertices. After more than half a century of intensive research, the result by [Li et al. STOC'21] finally gave a \emph{randomized} algorithm for checking $k$-connectivity in near-optimal $\widehat{O}(m)$ time. (We use $\widehat{O}(\cdot)$ to hide an $n^{o(1)}$ factor.) Deterministic algorithms, unfortunately, have remained much slower even if we assume a linear-time max-flow algorithm: they either require at least $\Omega(mn)$ time [Even'75; Henzinger Rao and Gabow, FOCS'96; Gabow, FOCS'00] or assume that $k=o(\sqrt{\log n})$ [Saranurak and Yingchareonthawornchai, FOCS'22]. We show a \emph{deterministic} algorithm for checking $k$-vertex connectivity in time proportional to making $\widehat{O}(k^{2})$ max-flow calls, and, hence, in $\widehat{O}(mk^{2})$ time using the deterministic max-flow algorithm by [Brand et al. FOCS'23]. Our algorithm gives the first almost-linear-time bound for all $k$ where $\sqrt{\log n}\le k\le n^{o(1)}$ and subsumes up to a sub polynomial factor the long-standing state-of-the-art algorithm by [Even'75] which requires $O(n+k^{2})$ max-flow calls. Our key technique is a deterministic algorithm for terminal reduction for vertex connectivity: given a terminal set separated by a vertex mincut, output either a vertex mincut or a smaller terminal set that remains separated by a vertex mincut. We also show a deterministic $(1+\epsilon)$-approximation algorithm for vertex connectivity that makes $O(n/\epsilon^2)$ max-flow calls, improving the bound of $O(n^{1.5})$ max-flow calls in the exact algorithm of [Gabow, FOCS'00]. The technique is based on Ramanujan graphs.


翻译:暂无翻译

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年3月7日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
可解释AI(XAI)工具集—DrWhy
专知
25+阅读 · 2019年6月4日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年9月28日
VIP会员
相关VIP内容
专知会员服务
32+阅读 · 2021年3月7日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
可解释AI(XAI)工具集—DrWhy
专知
25+阅读 · 2019年6月4日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员