Let $E=\mathbb{Q}\big(\sqrt{-d}\big)$ be an imaginary quadratic field for a square-free positive integer $d$, and let $\mathcal{O}$ be its ring of integers. For each positive integer $m$, let $I_m$ be the free Hermitian lattice over $\mathcal{O}$ with an orthonormal basis, let $\mathfrak{S}_d(1)$ be the set consisting of all positive definite integral unary Hermitian lattices over $\mathcal{O}$ that can be represented by some $I_m$, and let $g_d(1)$ be the least positive integer such that all Hermitian lattices in $\mathfrak{S}_d(1)$ can be uniformly represented by $I_{g_d(1)}$. The main results of this work provide an algorithm to calculate the explicit form of $\mathfrak{S}_d(1)$ and the exact value of $g_d(1)$ for every imaginary quadratic field $E$, which can be viewed as a natural extension of the Pythagoras number in the lattice setting.
翻译:暂无翻译