In this paper we study the orbit closure problem for a reductive group $G\subseteq GL(X)$ acting on a finite dimensional vector space $V$ over ${\mathbb C}$. We assume that the center of $GL(X)$ lies within $G$ and acts on $V$ through a fixed non-trivial character. We study points $y,z\in V$ where (i) $z$ is obtained as the leading term of the action of a 1-parameter subgroup $\lambda (t)\subseteq G$ on $y$, and (ii) $y$ and $z$ have large distinctive stabilizers $K,H \subseteq G$. Let $O(z)$ (resp. $O(y)$) denote the $G$-orbits of $z$ (resp. $y$), and $\overline{O(z)}$ (resp. $\overline{O(y)}$) their closures, then (i) implies that $z\in \overline{O(y)}$. We address the question: under what conditions can (i) and (ii) be simultaneously satisfied, i.e, there exists a 1-PS $\lambda \subseteq G$ for which $z$ is observed as a limit of $y$. Using $\lambda$, we develop a leading term analysis which applies to $V$ as well as to ${\cal G}= Lie(G)$ the Lie algebra of $G$ and its subalgebras ${\cal K}$ and ${\cal H}$, the Lie algebras of $K$ and $H$ respectively. Through this we construct the Lie algebra $\hat{\cal K} \subseteq {\cal H}$ which connects $y$ and $z$ through their Lie algebras. We develop the properties of $\hat{\cal K}$ and relate it to the action of ${\cal H}$ on $\overline{N}=V/T_z O(z)$, the normal slice to the orbit $O(z)$. Next, we examine the possibility of {\em intermediate $G$-varieties} $W$ which lie between the orbit closures of $z$ and $y$, i.e. $\overline{O(z)} \subsetneq W \subsetneq O(y)$. These intermediate varieties are constructed using the grading obtained from $\lambda $ by its action on $V$ and ${\cal G}$. The paper hopes to contribute to the Geometric Complexity Theory approach of addressing problems in computational complexity in theoretical computer science.


翻译:暂无翻译

0
下载
关闭预览

相关内容

CC在计算复杂性方面表现突出。它的学科处于数学与计算机理论科学的交叉点,具有清晰的数学轮廓和严格的数学格式。官网链接:https://link.springer.com/journal/37
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
147+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
32+阅读 · 2019年10月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
CVE-2018-7600 - Drupal 7.x 远程代码执行exp
黑客工具箱
14+阅读 · 2018年4月17日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Syntax-semantics interface: an algebraic model
Arxiv
0+阅读 · 2023年11月10日
Arxiv
0+阅读 · 2023年11月8日
Arxiv
0+阅读 · 2023年11月7日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
CVE-2018-7600 - Drupal 7.x 远程代码执行exp
黑客工具箱
14+阅读 · 2018年4月17日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员