In the commercial aviation domain, there are a large number of documents, like, accident reports (NTSB, ASRS) and regulatory directives (ADs). There is a need for a system to access these diverse repositories efficiently in order to service needs in the aviation industry, like maintenance, compliance, and safety. In this paper, we propose a Knowledge Graph (KG) guided Deep Learning (DL) based Question Answering (QA) system for aviation safety. We construct a Knowledge Graph from Aircraft Accident reports and contribute this resource to the community of researchers. The efficacy of this resource is tested and proved by the aforesaid QA system. Natural Language Queries constructed from the documents mentioned above are converted into SPARQL (the interface language of the RDF graph database) queries and answered. On the DL side, we have two different QA models: (i) BERT QA which is a pipeline of Passage Retrieval (Sentence-BERT based) and Question Answering (BERT based), and (ii) the recently released GPT-3. We evaluate our system on a set of queries created from the accident reports. Our combined QA system achieves 9.3% increase in accuracy over GPT-3 and 40.3% increase over BERT QA. Thus, we infer that KG-DL performs better than either singly.
翻译:在商业航空领域,有大量文件,如事故报告(NTSB、ASRS)和监管指令(ADs)等。需要建立一个系统,高效率地访问这些不同的储存库,以便满足航空业的需要,如维修、合规和安全等。在本文中,我们提议了一个基于航空安全的深入学习指导(KG)系统。我们从飞机事故报告(NTSB、ASRS)和监管指令(ADs)中构建了一个知识图,为研究人员群提供了这一资源。上述质量保证系统测试并证明了这一资源的效力。从上述文件中创建的自然语言问答器被转换成SPARQL(RDF图表数据库的界面语言)查询和回答。在DL方面,我们有两种不同的QA模式:(一) BERT QA,这是通过Retreival(Sent-BERT)和问题回答(BERT)的管道,以及(BERT),以及(二)最近发布的GPT-3系统。我们从40-LQ中评估了一套我们从事故报告中创建的准确度上升的系统。