Entity alignment is a basic and vital technique in knowledge graph (KG) integration. Over the years, research on entity alignment has resided on the assumption that KGs are static, which neglects the nature of growth of real-world KGs. As KGs grow, previous alignment results face the need to be revisited while new entity alignment waits to be discovered. In this paper, we propose and dive into a realistic yet unexplored setting, referred to as continual entity alignment. To avoid retraining an entire model on the whole KGs whenever new entities and triples come, we present a continual alignment method for this task. It reconstructs an entity's representation based on entity adjacency, enabling it to generate embeddings for new entities quickly and inductively using their existing neighbors. It selects and replays partial pre-aligned entity pairs to train only parts of KGs while extracting trustworthy alignment for knowledge augmentation. As growing KGs inevitably contain non-matchable entities, different from previous works, the proposed method employs bidirectional nearest neighbor matching to find new entity alignment and update old alignment. Furthermore, we also construct new datasets by simulating the growth of multilingual DBpedia. Extensive experiments demonstrate that our continual alignment method is more effective than baselines based on retraining or inductive learning.
翻译:实体对齐是知识图集整合的基本和重要技术。 多年来, 实体对齐的研究基于以下假设: KGs是静态的, 忽视了真实世界KGs增长的性质。 随着 KGs的增长, 以前的对齐结果需要重新审视, 而新的实体对齐则等待发现。 在本文件中, 我们提议并跳入一个现实的、 但尚未探索的组合环境, 称为持续的实体对齐。 为了避免在新的实体和三重体出现时对整个 KGs 进行再培训, 我们为此任务提出了一个连续的对齐方法。 它根据实体的对齐关系重建一个实体的代表性, 使其能够快速和感性地生成新实体的嵌入。 随着新的实体对齐结果的增长, 选择和重新展示部分的组合前实体对配对, 来获取可靠的对齐, 被称为持续实体对齐。 由于不断增长的KGGs不可避免地包含与以往作品不同的不可调和实体, 拟议的方法使用双向相近的对齐方法来找到新的实体对齐并更新旧的对齐。 此外, 我们还通过不断的多层次的实验来展示新的数据升级方法, 。