In this article, we introduce mixture representations for likelihood ratio ordered distributions. Essentially, the ratio of two probability densities, or mass functions, is monotone if and only if one can be expressed as a mixture of one-sided truncations of the other. To illustrate the practical value of the mixture representations, we address the problem of density estimation for likelihood ratio ordered distributions. In particular, we propose a nonparametric Bayesian solution which takes advantage of the mixture representations. The prior distribution is constructed from Dirichlet process mixtures and has large support on the space of pairs of densities satisfying the monotone ratio constraint. With a simple modification to the prior distribution, we can test the equality of two distributions against the alternative of likelihood ratio ordering. We develop a Markov chain Monte Carlo algorithm for posterior inference and demonstrate the method in a biomedical application.


翻译:在本篇文章中,我们引入了对分配量概率比的混合表示方式。基本上,两种概率密度或质量函数的比,如果并且只有在一种能表现为另一种单向减速的混合体时,是单色的。为了说明混合物的表示方式的实际价值,我们解决了对分配量的可能性比的密度估计问题。特别是,我们提出了一个利用混合物表示方式的非对称巴耶斯式的解决方案。先前的分布方式是由Drichlet工艺混合物构建的,对满足单质比限制的双倍密度空间有很大的支持。只要简单修改前一种分配方式,我们就可以测试两种分配方式与替代的可能性比排序方式的平等性。我们开发了马可夫-蒙特-卡洛后游算法,并在生物医学应用中演示了这种方法。

0
下载
关闭预览

相关内容

Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
已删除
将门创投
3+阅读 · 2018年6月20日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年12月3日
Arxiv
0+阅读 · 2021年12月2日
Contrastive Representation Distillation
Arxiv
5+阅读 · 2019年10月23日
Multiple Combined Constraints for Image Stitching
Arxiv
3+阅读 · 2018年9月18日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
已删除
将门创投
3+阅读 · 2018年6月20日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员