In this article, we introduce mixture representations for likelihood ratio ordered distributions. Essentially, the ratio of two probability densities, or mass functions, is monotone if and only if one can be expressed as a mixture of one-sided truncations of the other. To illustrate the practical value of the mixture representations, we address the problem of density estimation for likelihood ratio ordered distributions. In particular, we propose a nonparametric Bayesian solution which takes advantage of the mixture representations. The prior distribution is constructed from Dirichlet process mixtures and has large support on the space of pairs of densities satisfying the monotone ratio constraint. With a simple modification to the prior distribution, we can test the equality of two distributions against the alternative of likelihood ratio ordering. We develop a Markov chain Monte Carlo algorithm for posterior inference and demonstrate the method in a biomedical application.
翻译:在本篇文章中,我们引入了对分配量概率比的混合表示方式。基本上,两种概率密度或质量函数的比,如果并且只有在一种能表现为另一种单向减速的混合体时,是单色的。为了说明混合物的表示方式的实际价值,我们解决了对分配量的可能性比的密度估计问题。特别是,我们提出了一个利用混合物表示方式的非对称巴耶斯式的解决方案。先前的分布方式是由Drichlet工艺混合物构建的,对满足单质比限制的双倍密度空间有很大的支持。只要简单修改前一种分配方式,我们就可以测试两种分配方式与替代的可能性比排序方式的平等性。我们开发了马可夫-蒙特-卡洛后游算法,并在生物医学应用中演示了这种方法。