We study multi-agent reinforcement learning (MARL) in a stochastic network of agents. The objective is to find localized policies that maximize the (discounted) global reward. In general, scalability is a challenge in this setting because the size of the global state/action space can be exponential in the number of agents. Scalable algorithms are only known in cases where dependencies are static, fixed and local, e.g., between neighbors in a fixed, time-invariant underlying graph. In this work, we propose a Scalable Actor Critic framework that applies in settings where the dependencies can be non-local and stochastic, and provide a finite-time error bound that shows how the convergence rate depends on the speed of information spread in the network. Additionally, as a byproduct of our analysis, we obtain novel finite-time convergence results for a general stochastic approximation scheme and for temporal difference learning with state aggregation, which apply beyond the setting of MARL in networked systems.
翻译:我们在一个代理商的随机网络中研究多剂强化学习(MARL) 。 目标是找到使(折扣的)全球奖励最大化的地方化政策。 一般来说, 伸缩性是这一背景下的一个挑战, 因为全球州/ 行动空间的大小在代理商数量上可以指数化。 只有在依赖性是静态的、固定的和局部的(例如,在固定的、时间变化性的底图中)邻居之间,我们才知道可缩放的算法。 在这项工作中,我们提出了一个可缩放的行为者批评框架,该框架适用于依赖性可能是非本地的和随机的环境下,并提供一个限定时间的错误,表明趋同率如何取决于网络中信息传播的速度。 此外,作为我们分析的副产品,我们获得了新的固定时间趋同结果,用于一般的随机近似和与国家汇总之间的时间差异学习,这在网络系统中的MARL设置之外。