In this paper we investigate two-point algebraic-geometry codes (AG codes) coming from the Beelen-Montanucci (BM) maximal curve. We study properties of certain two-point Weierstrass semigroups of the curve and use them for determining a lower bound on the minimum distance of such codes. AG codes with better parameters with respect to comparable two-point codes from the Garcia-G\"uneri-Stichtenoth (GGS) curve are discovered.
翻译:在本文中,我们调查了来自Beelen-Montanucci(BM)最大曲线的两点代数-几何码(AG代码),我们研究了曲线中某些两点Weierstrass半组的特性,并使用这些特性来确定这些曲线最低距离的下限。 发现了Garcia-G\"uneri-Stichtenoth(GGS)曲线上比较的两点码具有较好参数的AG代码。