We propose novel compression algorithms for time-varying channel state information (CSI) in wireless communications. The proposed scheme combines (lossy) vector quantisation and (lossless) compression. First, the new vector quantisation technique is based on a class of parametrised companders applied on each component of the normalised CSI vector. Our algorithm chooses a suitable compander in an intuitively simple way whenever empirical data are available. Then, the sequences of quantisation indices are compressed using a context-tree-based approach. Essentially, we update the estimate of the conditional distribution of the source at each instant and encode the current symbol with the estimated distribution. The algorithms have low complexity, are linear-time in both the spatial dimension and time duration, and can be implemented in an online fashion. We run simulations to demonstrate the effectiveness of the proposed algorithms in such scenarios.
翻译:我们提出无线通信中时间变化频道状态信息的新压缩算法(CSI ) 。 拟议的方案结合了( 损失) 矢量量化和( 损失) 压缩。 首先, 新的矢量量化技术基于对正常的 CSI 矢量的每个组成部分应用的一组假相折算方。 我们的算法选择了在有经验数据时以直观的简单方式进行适当的折算。 然后, 量化指数的序列会通过基于上下文的树本方法压缩 。 基本上, 我们更新了每个瞬间源的有条件分布估计值, 并将当前符号编码为估计分布值。 算法的复杂度低, 在空间层面和时间长度上都是线性, 并且可以在线方式实施。 我们运行模拟, 以展示在这种情景中拟议的算法的有效性 。