Despite the surge of deep learning in the past decade, some users are skeptical to deploy these models in practice due to their black-box nature. Specifically, in the medical space where there are severe potential repercussions, we need to develop methods to gain confidence in the models' decisions. To this end, we propose a novel medical imaging generative adversarial framework, medXGAN (medical eXplanation GAN), to visually explain what a medical classifier focuses on in its binary predictions. By encoding domain knowledge of medical images, we are able to disentangle anatomical structure and pathology, leading to fine-grained visualization through latent interpolation. Furthermore, we optimize the latent space such that interpolation explains how the features contribute to the classifier's output. Our method outperforms baselines such as Gradient-Weighted Class Activation Mapping (Grad-CAM) and Integrated Gradients in localization and explanatory ability. Additionally, a combination of the medXGAN with Integrated Gradients can yield explanations more robust to noise. The code is available at: https://avdravid.github.io/medXGAN_page/.
翻译:尽管过去十年来深层学习激增,但一些用户由于黑盒子的性质而怀疑实际应用这些模型。具体地说,在有严重潜在影响的医学空间,我们需要制定方法,以获得对模型决定的信心。为此,我们提出一个新的医学成像基因对抗框架,MedXGAN(医疗电子X光学GAN),以直观地解释医学分类者在其二进制预测中注重什么。通过对医学图像的域域知识进行编码,我们能够解析解解解解解解解解解的解剖结构和病理学,导致通过潜伏内推法进行精细的可视化。此外,我们优化了潜伏空间,例如内推法解释这些特征如何促进分类器输出。我们的方法超越了精密的分类调节图(Gradent-Weight Squalation 映射图(Grad-CAM))和本地化和解释能力的综合梯度等基线。此外,通过对医学成像和综合梯度的组合,我们能够产生更稳健的解释性的解释。代码可在下列网址上查到: https://avdravivivio.Ang.and.andiod。