This paper studies the number of limit cycles that may bifurcate from an equilibrium of an autonomous system of differential equations. The system in question is assumed to be of dimension $n$, have a zero-Hopf equilibrium at the origin, and consist only of homogeneous terms of order $m$. Using the first-order averaging method, we prove that at most $(m-1)\cdot m^{n-2}$ limit cycles can bifurcate from the origin of the system for generic $n\geq3$ and $m\geq2$. Using the averaging method of order $k$, we show that the system has no more than $(km)^{n-1}$ limit cycles that can bifurcate from the origin. The exact numbers of limit cycles or tight bounds on the numbers are determined by computing the mixed volumes of some polynomial systems obtained from the averaged functions. Based on symbolic and algebraic computation, a general and algorithmic approach is proposed to derive sufficient conditions for a given differential system to have a prescribed number of limit cycles. The effectiveness of the proposed approach is illustrated by a family of third-order differential equations and by a four-dimensional hyperchaotic differential system.
翻译:本文研究从自主差异方程式平衡制中分离出的限值周期的数量。 假设有关系统是维度值为$美元, 原价为零- 霍普夫平衡制, 仅包含单质顺序条件 $m美元。 使用一阶平均法, 我们证明, 最多( m-1)\ cdot m ⁇ n-2} 美元限值周期可以从通用正方程式( $n\ geq3$ 和 $m\ ge2$ ) 的源代码中分离出。 我们使用平均定价 $k$ 的法, 显示该系统的限值周期不超过 $( km) ⁇ n-1} 美元 。 所拟议的限值周期的确切数量或数字的紧凑界限是通过计算从平均函数中获得的某些多元系统量的混合量来决定的 。 根据象征性和代数计算, 提议采用一般和算法方法, 为特定差异系统创造充分的条件, 以规定限值周期数为定值 。 所拟议的方法的有效性由三等式系统组合、 四等式差异方形组合说明。