The Min-Hashing approach to sketching has become an important tool in data analysis, information retrial, and classification. To apply it to real-valued datasets, the ICWS algorithm has become a seminal approach that is widely used, and provides state-of-the-art performance for this problem space. However, ICWS suffers a computational burden as the sketch size K increases. We develop a new Simplified approach to the ICWS algorithm, that enables us to obtain over 20x speedups compared to the standard algorithm. The veracity of our approach is demonstrated empirically on multiple datasets and scenarios, showing that our new Simplified CWS obtains the same quality of results while being an order of magnitude faster.


翻译:在数据分析、信息重审和分类方面,草图的最小化方法已成为一个重要的工具。为了将其应用于实际价值的数据集,ICWS算法已经成为一种开创性方法,被广泛使用,为问题空间提供了最先进的性能。然而,随着草图大小K的增大,ICWS承受着计算负担。我们开发了一种新的简化方法,使我们得以获得与标准算法相比的20倍以上的超速。我们方法的真实性在多个数据集和假设中得到了经验性的证明,表明我们新的简化的 CWS获得同样质量的结果,而其规模则更快。

0
下载
关闭预览

相关内容

国际Web服务会议(ICWS)是研究人员和行业从业人员交流基于Web服务的最新技术和实践进展、确定新的研究主题和定义基于Web服务的未来的主要国际论坛。所有关于基于Web的服务生命周期研究和管理的主题都与ICWS的主题保持一致。2019年,该会议将努力推进规模最大的互联网/网络服务国际专业论坛。官网链接:https://conferences.computer.org/icws/2019/
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2020年3月1日
VIP会员
相关VIP内容
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员