Weakly supervised object detection (WSOD) is a challenging task that requires simultaneously learn object classifiers and estimate object locations under the supervision of image category labels. A major line of WSOD methods roots in multiple instance learning which regards images as bags of instances and selects positive instances from each bag to learn the detector. However, a grand challenge emerges when the detector inclines to converge to discriminative parts of objects rather than the whole objects. In this paper, under the hypothesis that optimal solutions are included in local minima, we propose a discovery-and-selection approach fused with multiple instance learning (DS-MIL), which finds rich local minima and select optimal solution from multiple local minima. To implement DS-MIL, an attention module is proposed so that more context information can be captured by feature maps and more valuable proposals can be collected during training. With proposal candidates, a selection module is proposed to select informative instances for object detector. Experimental results on commonly used benchmarks show that our proposed DS-MIL approach can consistently improve the baselines, reporting state-of-the-art performance.


翻译:微弱监督天体探测(WSOD)是一项具有挑战性的任务,需要同时学习物体分类师,并在图像类别标签的监督下估计物体位置。WSOD方法的主要一行源于多实例学习,将图像视为一袋实例,并从每个包中选择积极的事例来学习探测器。然而,当探测器的内涵汇集到有区别的物体部分而不是整个物体时,就会出现巨大的挑战。在本文件中,根据最佳解决办法包含在当地微型模型的假设,我们建议采用发现和选择方法,与多实例学习(DS-MIL)相结合,发现丰富的本地微型模型,并从多个本地微型模型中选择最佳解决办法。为了实施DS-MIL,建议了一个关注模块,以便更多的背景信息能够通过特征地图收集,并在培训期间收集更有价值的建议。在推荐候选人时,建议选择模块为对象探测器选择信息实例。常用基准的实验结果显示,我们提议的DS-MIL方法可以不断改进基线,报告最新业绩。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2021年3月3日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员