This paper studies how a domain-independent planner and combinatorial search can be employed to play Angry Birds, a well established AI challenge problem. To model the game, we use PDDL+, a planning language for mixed discrete/continuous domains that supports durative processes and exogenous events. The paper describes the model and identifies key design decisions that reduce the problem complexity. In addition, we propose several domain-specific enhancements including heuristics and a search technique similar to preferred operators. Together, they alleviate the complexity of combinatorial search. We evaluate our approach by comparing its performance with dedicated domain-specific solvers on a range of Angry Birds levels. The results show that our performance is on par with these domain-specific approaches in most levels, even without using our domain-specific search enhancements.
翻译:本文研究了如何使用领域无关的规划器和组合搜索来玩愤怒的小鸟,这是一个经过充分验证的人工智能挑战问题。为了建模游戏,我们使用了PDDL+,这是一种支持持续过程和外部事件的混合离散/连续领域规划语言。本文描述了模型并确定了降低问题复杂性的关键设计决策。此外,我们提出了几种领域特定的增强方法,包括启发式和类似首选运算符的搜索技术。它们共同缓解了组合搜索的复杂性。我们通过将其性能与专门的领域特定解算器在一系列愤怒的小鸟关卡上进行比较来评估我们的方法。结果显示,在大多数关卡中,即使不使用领域特定的搜索增强,我们的性能也与这些专门领域的方法不相上下。