In this paper, we focus on exploring the robustness of the 3D object detection in point clouds, which has been rarely discussed in existing approaches. We observe two crucial phenomena: 1) the detection accuracy of the hard objects, e.g., Pedestrians, is unsatisfactory, 2) when adding additional noise points, the performance of existing approaches decreases rapidly. To alleviate these problems, a novel TANet is introduced in this paper, which mainly contains a Triple Attention (TA) module, and a Coarse-to-Fine Regression (CFR) module. By considering the channel-wise, point-wise and voxel-wise attention jointly, the TA module enhances the crucial information of the target while suppresses the unstable cloud points. Besides, the novel stacked TA further exploits the multi-level feature attention. In addition, the CFR module boosts the accuracy of localization without excessive computation cost. Experimental results on the validation set of KITTI dataset demonstrate that, in the challenging noisy cases, i.e., adding additional random noisy points around each object,the presented approach goes far beyond state-of-the-art approaches. Furthermore, for the 3D object detection task of the KITTI benchmark, our approach ranks the first place on Pedestrian class, by using the point clouds as the only input. The running speed is around 29 frames per second.
翻译:在本文中,我们侧重于探索三维天体在点云中探测的稳健性,这些在现有方法中很少讨论过。我们观察了两个关键现象:(1) 硬物体(例如Pedestrians)的探测准确性不能令人满意,(2) 增加额外的噪声点时,现有方法的性能迅速下降。为了缓解这些问题,本文件引入了一个新型的TANet,主要包含一个三重注意模块,以及一个Coarse-Fine Regresion(CFR)模块。通过考虑每个对象的频道、点对点和反毒联合关注,TA模块增强了目标的关键信息,同时抑制了不稳定的云点。此外,新的堆叠式TA进一步利用了多层次的注意。此外,CFRA模块提高了本地化的准确性,而没有过高的计算成本。KITTI第二套数据集的验证实验结果显示,在具有挑战性的情况中,即在每个对象周围增加随机的噪音点,所提出的方法远远超出了目标的关键信息,同时抑制了不稳定的云点。此外,新版的TA进一步利用PL级的轨道定位,作为我们级基准级的轨道上的轨道定位。