A recently introduced technique for a sparse optimization problem called "safe screening" allows us to identify irrelevant variables in the early stage of optimization. In this paper, we first propose a flexible framework for safe screening based on the Fenchel-Rockafellar duality and then derive a strong safe screening rule for norm-regularized least squares by the framework. We call the proposed screening rule for norm-regularized least squares "dynamic Sasvi" because it can be interpreted as a generalization of Sasvi. Unlike the original Sasvi, it does not require the exact solution of a more strongly regularized problem; hence, it works safely in practice. We show that our screening rule can eliminate more features and increase the speed of the solver in comparison with other screening rules both theoretically and experimentally.


翻译:最近引入的稀薄优化问题“安全筛选”技术使我们得以在优化的早期阶段确定无关的变量。在本文中,我们首先提出一个基于Fenchel-Rockafellar双重性的安全筛选的灵活框架,然后根据框架为规范正规化的最小方块制定强有力的安全筛选规则。我们称拟议的规范正规化最低方块的筛选规则“Sasvi ”, 因为它可以被解释为对Sasvi的概括化。 与原Sasvi不同的是,它并不要求精确地解决更严格常规化的问题;因此,它在实践中是安全的。我们表明,与理论上和实验上的其他筛选规则相比,我们的筛选规则可以消除更多的特征,提高解决问题者的速度。

0
下载
关闭预览

相关内容

专知会员服务
37+阅读 · 2021年3月29日
专知会员服务
51+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
180+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
已删除
将门创投
4+阅读 · 2019年8月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年4月2日
Arxiv
0+阅读 · 2021年4月2日
Arxiv
0+阅读 · 2021年3月30日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关VIP内容
专知会员服务
37+阅读 · 2021年3月29日
专知会员服务
51+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
180+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
4+阅读 · 2019年8月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员