We consider the application of Runge-Kutta (RK) methods to gradient systems $(d/dt)x = -\nabla V(x)$, where, as in many optimization problems, $V$ is convex and $\nabla V$ (globally) Lipschitz-continuous with Lipschitz constant $L$. Solutions of this system behave contractively, i.e. the Euclidean distance between two solutions $x(t)$ and $\widetilde{x}(t)$ is a nonincreasing function of $t$. It is then of interest to investigate whether a similar contraction takes place, at least for suitably small step sizes $h$, for the discrete solution. Dahlquist and Jeltsch results' imply that (1) there are explicit RK schemes that behave contractively whenever $Lh$ is below a scheme-dependent constant and (2) Euler's rule is optimal in this regard. We prove however, by explicit construction of a convex potential using ideas from robust control theory, that there exists RK schemes that fail to behave contractively for any choice of the time-step $h$.
翻译:我们考虑将Runge-Kutta(RK)方法应用于梯度系统$(d/dt)x=-nabla V(x)$(x)美元,正如在许多优化问题中一样,美元与Lipschitz 常值美元(全球)Lipschitz 连续使用Lipschitz 常值美元。这个系统的解决办法具有合同性,即两种解决方案美元(t)和美元(t)之间的Eclidean距离不是增加的美元。因此,调查类似的收缩是否发生,至少对于适当的小步规模美元而言,是值得注意的。 Dahlquist 和 Jeltsch 的结果意味着:(1) 当美元低于一个依赖方案的常数时,有明确的RK计划以合同方式行事,而且(2) Euler 规则在这方面是最佳的。然而,我们通过使用强健控制理论的思想明确构建一个配置方轴潜力,证明存在着无法为任何时间选择合同的RK计划。