The Volume-Audience-Match simulator, or VAM was applied to predict future activity on Twitter related to international economic affairs. VAM was applied to do timeseries forecasting to predict the: (1) number of total activities, (2) number of active old users, and (3) number of newly active users over the span of 24 hours from the start time of prediction. VAM then used these volume predictions to perform user link predictions. A user-user edge was assigned to each of the activities in the 24 future timesteps. VAM considerably outperformed a set of baseline models in both the time series and user-assignment tasks
翻译:为了预测与国际经济事务有关的今后在Twitter上的活动,应用了量-量-量模拟模拟器,即VAM来进行时间序列预测,以预测:(1) 活动总数,(2) 活跃的老用户数目,(3) 从预测开始24小时内新活跃的用户数目。 VAM然后利用这些量预测来进行用户链接预测。为今后24个时间步骤中的每项活动指定了用户-用户优势。 VAM大大超过时间序列和用户任务中的一系列基线模型。