In this paper, we analyze the approximation quality of a greedy heuristic for automatic map labeling. As input, we have a set of events, each associated with a label at a fixed position, a timestamp, and a weight. Let a time-window labeling be a selection of these labels such that all corresponding timestamps lie in a queried time window and no two labels overlap. A solution to the time-window labeling problem consists of a data structure that encodes a time-window labeling for each possible time window; when a user specifies a time window of interest using a slider interface, we query the data structure for the corresponding labeling. We define the quality of a time-window labeling solution as the sum of the weights of the labels in each time-window labeling, integrated over all time windows. We aim at maximizing the quality under the condition that a label may never disappear when the user shrinks the time window. In this paper, we analyze how well a greedy heuristic approximates the maximum quality that can be realized under this condition. On the one hand, we present an instance with square labels of equal size and equal weight for which the greedy heuristic fails to find a solution of at least 1/4 of the quality of an optimal solution. On the other hand, we prove that the greedy heuristic does guarantee a solution with at least 1/8 of the quality of an optimal solution. In the case of disk-shaped labels of equal size and equal weight, the greedy heuristic gives a solution with at least 1/10 of the quality of an optimal solution. If the labels are squares or disks of equal size and the maximum weight divided by the minimum weight is at most b, then the greedy heuristic has approximation ratio Theta(log b).


翻译:在本文中, 我们分析用于自动地图标签的贪婪软盘标签的近似质量 。 作为输入, 我们有一个事件集, 每个事件都与固定位置的标签、 时间戳和重量相关。 我们定义一个时间窗标签的品质, 将所有相应的时窗标签都放在一个询问的时间窗口中, 没有两个标签重叠 。 时间窗标签问题的解决方案包含一个数据结构, 该结构将每个可能的时窗口的时间窗标签编码成一个时风标签; 当用户使用滑动界面指定一个感兴趣的时间窗口时, 我们为相应的质量标签查询数据结构 。 我们定义一个时间窗标签标签的品质是每个时窗标签的重量的总和, 在所有时间窗口中, 我们的目标是尽可能提高标签的质量, 当用户压缩时窗口时空时, 我们分析一个贪婪的厚度估计在这种条件下可以实现的最大质量。 一方面, 我们将一个时间窗框标签的质量标定为最大质量, 一个比重的比重为1。 我们用平价的标签, 一个比重的比重等于一个比重, 。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年10月14日
Arxiv
0+阅读 · 2022年10月14日
Arxiv
0+阅读 · 2022年10月14日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员