Capture-recapture (CRC) surveys are used to estimate the size of a population whose members cannot be enumerated directly. CRC surveys have been used to estimate the number of Covid-19 infections, people who use drugs, sex workers, conflict casualties, and trafficking victims. When $k$ capture samples are obtained, counts of unit captures in subsets of samples are represented naturally by a $2^k$ contingency table in which one element -- the number of individuals appearing in none of the samples -- remains unobserved. In the absence of additional assumptions, the population size is not identifiable (i.e. point-identified). Stringent assumptions about the dependence between samples are often used to achieve point-identification. However, real-world CRC surveys often use convenience samples in which the assumed dependence cannot be guaranteed, and population size estimates under these assumptions may lack empirical credibility. In this work, we apply the theory of partial identification to show that weak assumptions or qualitative knowledge about the nature of dependence between samples can be used to characterize a non-trivial confidence set for the true population size. We construct confidence sets under bounds on pairwise capture probabilities using two methods: test inversion bootstrap confidence intervals, and profile likelihood confidence intervals. Simulation results demonstrate well-calibrated confidence sets for each method. In an extensive real-world study, we apply the new methodology to the problem of using heterogeneous survey data to estimate the number of people who inject drugs in Brussels, Belgium.
翻译:利用儿童权利委员会的调查来估计Covid-19感染者、使用毒品者、性工作者、冲突伤亡者和贩运受害者的人数。当获得以K美元为样本的样本时,在抽样子组中单位捕获的数数自然地用一个2千美元应急表来表示,其中一个要素 -- -- 没有抽样的样本中出现的人数 -- -- 仍然得不到观察。在没有其他假设的情况下,人口规模无法确定(即点确定)。关于样本之间依赖性的严格假设常常用于确定点。然而,真实世界儿童权利委员会的调查经常使用无法保证依赖性的方便样本,而根据这些假设对人口规模的估计可能缺乏经验可信度。在这项工作中,我们采用了部分鉴定理论,以表明关于样本依赖性质的假设或定性知识薄弱,可以用来确定关于真实人口规模的非三连信任度(即点确定 ) 。我们用两种方法对准的准确性假设性假设性假设性假设性假设性假设性假设性假设性假设值,用一种测试性模型来显示一种测试性信任度的准确性模型,我们用一种测试性模型来测量比利时人民的真实性调查。