We examine the last-iterate convergence rate of Bregman proximal methods - from mirror descent to mirror-prox - in constrained variational inequalities. Our analysis shows that the convergence speed of a given method depends sharply on the Legendre exponent of the underlying Bregman regularizer (Euclidean, entropic, or other), a notion that measures the growth rate of said regularizer near a solution. In particular, we show that boundary solutions exhibit a clear separation of regimes between methods with a zero and non-zero Legendre exponent respectively, with linear convergence for the former versus sublinear for the latter. This dichotomy becomes even more pronounced in linearly constrained problems where, specifically, Euclidean methods converge along sharp directions in a finite number of steps, compared to a linear rate for entropic methods.
翻译:我们研究了从镜底到反镜-反射-反射-反射-不均匀方法在受限制的变异性不平等中的最后地缘趋同率。我们的分析表明,特定方法的趋同速度明显取决于布雷格曼常规化器(Euglidean, entropic, or others)背后的传说,即测量上述常规化器在接近解决方案时的增长率的概念。特别是,我们表明,边界解决方案明显区分了零和非零传奇的两种方法的制度,前者是线性趋同,后者是线性线性趋同。在线性受约束的问题中,这种分法更为明显,具体地说,在线性受约束的问题中,尤克利德方法在有限的几个步骤上沿着锐利的方向汇合,而相比之下,共导法的线性速度是线性。