In this paper, we study binary constrained codes that are also resilient to bit-flip errors and erasures. In our first approach, we compute the sizes of constrained subcodes of linear codes. Since there exist well-known linear codes that achieve vanishing probabilities of error over the binary symmetric channel (which causes bit-flip errors) and the binary erasure channel, constrained subcodes of such linear codes are also resilient to random bit-flip errors and erasures. We employ a simple identity from the Fourier analysis of Boolean functions, which transforms the problem of counting constrained codewords of linear codes to a question about the structure of the dual code. Via examples of constraints, we illustrate the utility of our method in providing explicit values or efficient algorithms for our counting problem. Our second approach is to obtain good upper bounds on the sizes of the largest constrained codes that can correct a fixed number of combinatorial errors or erasures. We accomplish this using an extension of Delsarte's linear program (LP) to the setting of constrained systems. We observe that the numerical values of our LP-based upper bounds beat those obtained by using the generalized sphere packing bounds of Fazeli, Vardy, and Yaakobi (2015).
翻译:在本文中, 我们研究的二进制限制代码, 也适应于位翻错误和淡化。 在我们的第一种方法中, 我们计算了线性代码限制子代码的大小。 由于存在众所周知的线性代码, 使得二进制对称信道( 导致位翻错误) 和二进制删除通道的错误概率消失。 限制的线性代码也适应于随机的位翻错误和淡化。 我们从对布林函数的 Freier 分析中采用简单的身份, 将线性代码限制代码的计数问题转化为对双进制代码结构的问题。 我们的制约示例是, 我们展示了我们的方法在为我们计数问题提供明确值或有效算算算算算方法方面的实用性。 我们的第二个方法是在能够纠正固定的调试错误或淡化的最大限制代码的大小上获得良好的上限。 我们利用德尔萨特的线性程序( LP ) 扩展到约束系统设置的设置。 我们观察的是, 以亚萨利( Fali) 和 Var Basilb 的上限范围。