In this paper, we study binary constrained codes that are also resilient to bit-flip errors and erasures. In our first approach, we compute the sizes of constrained subcodes of linear codes. Since there exist well-known linear codes that achieve vanishing probabilities of error over the binary symmetric channel (which causes bit-flip errors) and the binary erasure channel, constrained subcodes of such linear codes are also resilient to random bit-flip errors and erasures. We employ a simple identity from the Fourier analysis of Boolean functions, which transforms the problem of counting constrained codewords of linear codes to a question about the structure of the dual code. Via examples of constraints, we illustrate the utility of our method in providing explicit values or efficient algorithms for our counting problem. Our second approach is to obtain good upper bounds on the sizes of the largest constrained codes that can correct a fixed number of combinatorial errors or erasures. We accomplish this using an extension of Delsarte's linear program (LP) to the setting of constrained systems. We observe that the numerical values of our LP-based upper bounds beat those obtained by using the generalized sphere packing bounds of Fazeli, Vardy, and Yaakobi (2015).


翻译:在本文中, 我们研究的二进制限制代码, 也适应于位翻错误和淡化。 在我们的第一种方法中, 我们计算了线性代码限制子代码的大小。 由于存在众所周知的线性代码, 使得二进制对称信道( 导致位翻错误) 和二进制删除通道的错误概率消失。 限制的线性代码也适应于随机的位翻错误和淡化。 我们从对布林函数的 Freier 分析中采用简单的身份, 将线性代码限制代码的计数问题转化为对双进制代码结构的问题。 我们的制约示例是, 我们展示了我们的方法在为我们计数问题提供明确值或有效算算算算算方法方面的实用性。 我们的第二个方法是在能够纠正固定的调试错误或淡化的最大限制代码的大小上获得良好的上限。 我们利用德尔萨特的线性程序( LP ) 扩展到约束系统设置的设置。 我们观察的是, 以亚萨利( Fali) 和 Var Basilb 的上限范围。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
124+阅读 · 2020年9月8日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月5日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员