We present a secure multiparty quantum computation (MPQC) for computing greatest common divisor (GCD) based on quantum multiparty private set union (PSU) by Liu, Yang, and Li. As the first step, we improve the security of the MPQC protocol for computing least common multiple (LCM) by Liu and Li by constructing an efficient exact quantum period-finding algorithm (EQPA) as a subroutine instead of the standard (probabilistic) Shor's quantum period-finding algorithm (QPA). The use of EQPA instead of the standard QPA guarantees the correctness of the protocol without repetitions. The improvement of LCM protocol also improves the private set union protocol which is based on computing LCM. Finally, using the same idea of the PSU protocol, we construct a quantum multiparty private set intersection (PSI) by transforming the PSI problem into the problem of computing GCD. Performance analysis shows that the correctness and the unconditional security in the semihonest model are guaranteed directly from the correctness and the security of the subroutine protocols (LCM and PSU protocols). Moreover, we show that the complexity of the proposed protocols is polynomial in the size of the secret inputs and the number of parties.
翻译:我们介绍了一种安全的多方量子计算(MPQC)用于计算最大公因数(GCD),其基于Liu,Yang和Li提出的量子多方私有集合并集(PSU)。作为第一步,我们通过构建高效的精确量子周期发现算法(EQPA),替换标准的(概率性的)Shor量子周期发现算法(QPA)子例程,提高了Liu和Li的计算最小公倍数(LCM)协议的安全性。使用EQPA代替标准QPA可以保证正确性而没有重复。改进LCM协议还改进了基于计算LCM的私有集合并集协议。最后,使用PSU协议的相同思路,我们通过将PSI问题转换为计算GCD的问题,构建了多方量子私有集合交集(PSI)。性能分析表明,在半诚实模型中,所提出协议的正确性和无条件安全性可直接从子例程协议(LCM和PSU协议)的正确性和安全性中得到保证。此外,我们还展示了所提出协议的复杂度可以多项式地表示为秘密输入的大小和参与方数量。