Gaussian processes (GPs) are a well-known nonparametric Bayesian inference technique, but they suffer from scalability problems for large sample sizes, and their performance can degrade for non-stationary or spatially heterogeneous data. In this work, we seek to overcome these issues through (i) employing variational free energy approximations of GPs operating in tandem with online expectation propagation steps; and (ii) introducing a local splitting step which instantiates a new GP whenever the posterior distribution changes significantly as quantified by the Wasserstein metric over posterior distributions. Over time, then, this yields an ensemble of sparse GPs which may be updated incrementally, and adapts to locality, heterogeneity, and non-stationarity in training data.
翻译:高斯过程(GPs)是一种众所周知的非参数性贝叶斯推导技术,但是它们因大样本尺寸的可缩缩问题而受到影响,其性能可因非静止或空间多样性数据而降解。 在这项工作中,我们力求通过以下方式克服这些问题:(一) 采用与在线预期传播步骤同时运行的GPs无差异能源近似值;以及(二) 引入一个局部分裂步骤,一旦后方分布发生与瓦塞斯坦指标对后方分布的量化所量化的显著变化时,即立即采用新的GP。 随着时间的推移,这会产生大量稀有的GPs,可以逐步更新,并适应培训数据中的地点、差异性和不常态性。