This paper defines a novel Bayesian inverse problem to infer an infinite-dimensional uncertain operator appearing in a differential equation, whose action on an observable state variable affects its dynamics. Inference is made tractable by parametrizing the operator using its eigendecomposition. The plausibility of operator inference in the sparse data regime is explored in terms of an uncertain, generalized diffusion operator appearing in an evolution equation for a contaminant's transport through a heterogeneous porous medium. Sparse data are augmented with prior information through the imposition of deterministic constraints on the eigendecomposition and the use of qualitative information about the system in the definition of the prior distribution. Limited observations of the state variable's evolution are used as data for inference, and the dependence on the solution of the inverse problem is studied as a function of the frequency of observations, as well as on whether or not the data is collected as a spatial or time series.


翻译:本文界定了一个新颖的贝叶西亚反向问题,以推断出一个出现在差异方程式中的无限的不确定运算者,该运算者对可观测状态变量的行动会影响其动态。通过使用其eigendecomposition使操作者具有准称性,可以推导出该运算者在稀散数据制度中的推论的可信性。从在污染物通过多孔多孔介质运输的进化方程式中出现的一个不确定的、普遍的扩散运算者的角度来探讨操作者在稀疏数据制度中的可推论性。通过对电子定序施加确定性限制和在前一次分布的定义中使用关于系统的定性信息,来充实了分散的数据。对状态变量演变的有限观察被用作推断数据,对反问题解决办法的依赖作为观察频率的函数加以研究,以及数据是否作为空间或时间序列收集。

0
下载
关闭预览

相关内容

专知会员服务
16+阅读 · 2021年5月21日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Generating Fact Checking Explanations
Arxiv
9+阅读 · 2020年4月13日
Arxiv
4+阅读 · 2018年4月26日
Arxiv
3+阅读 · 2018年1月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员