In Bayesian peer-to-peer decentralized data fusion, the underlying distributions held locally by autonomous agents are frequently assumed to be over the same set of variables (homogeneous). This requires each agent to process and communicate the full global joint distribution, and thus leads to high computation and communication costs irrespective of relevancy to specific local objectives. This work studies a family of heterogeneous decentralized fusion problems, where the set of problems in which either the communicated or the processed distributions describe different, but overlapping, states of interest that are subsets of a larger full global joint state is considered. We exploit the conditional independence structure of such problems and provide a rigorous derivation for a family of exact and approximate heterogeneous conditionally factorized channel filter methods. We further extend existing methods for approximate conservative filtering and decentralized fusion in heterogeneous dynamic problems. Numerical examples show more than 99.5\% potential communication reduction for heterogeneous channel filter fusion, and a multi-target tracking simulation shows that these methods provide consistent estimates.
翻译:在Bayesian同侪分散化的数据聚合中,自主代理商在当地持有的基本分布通常被认为属于同一一组变量(同源性),这就要求每个代理商处理和交流全球共同分布,从而导致计算和沟通费用高昂,而不论与具体本地目标是否相关。这项工作研究的是多种分散化的集合问题,在其中,传递或处理的分布所描述的、不同但重叠的一组问题,被认为是全球整体联合化较大国家的子集。我们利用了这些问题的有条件独立结构,为具有精确和近似混合的有条件分系数化通道过滤方法的大家庭提供了严格的推断。我们进一步推广了在多种动态问题中保守的过滤和分散化的现有方法。数字实例显示,对于多种渠道过滤聚变异化而言,可能有99.5 ⁇ 的潜在通信减少,多目标跟踪模拟显示,这些方法提供了一致的估计数。