We discretize a risk-neutral optimal control problem governed by a linear elliptic partial differential equation with random inputs using a Monte Carlo sample-based approximation and a finite element discretization, yielding finite dimensional control problems. We establish an exponential tail bound for the distance between the finite dimensional problems' solutions and the risk-neutral problem's solution. The tail bound implies that solutions to the risk-neutral optimal control problem can be reliably estimated with the solutions to the finite dimensional control problems. Numerical simulations illustrate our theoretical findings.
翻译:我们分解了由线性椭圆部分差分方程式管理的风险中性最佳控制问题,其中随机输入使用基于蒙特卡洛样本的近似值和有限元素分解,从而产生有限维控制问题。我们为有限维问题解决方案与中性风险问题解决方案之间的距离设定了指数尾线。尾盘意味着,对风险中性最佳控制问题的解决办法可以可靠地作出估算,并找到解决有限维控制问题的办法。数字模拟说明了我们的理论结论。