Photoswitchable molecules display two or more isomeric forms that may be accessed using light. Separating the electronic absorption bands of these isomers is key to selectively addressing a specific isomer and achieving high photostationary states whilst overall red-shifting the absorption bands serves to limit material damage due to UV-exposure and increases penetration depth in photopharmacological applications. Engineering these properties into a system through synthetic design however, remains a challenge. Here, we present a data-driven discovery pipeline for molecular photoswitches underpinned by dataset curation and multitask learning with Gaussian processes. In the prediction of electronic transition wavelengths, we demonstrate that a multioutput Gaussian process (MOGP) trained using labels from four photoswitch transition wavelengths yields the strongest predictive performance relative to single-task models as well as operationally outperforming time-dependent density functional theory (TD-DFT) in terms of the wall-clock time for prediction. We validate our proposed approach experimentally by screening a library of commercially available photoswitchable molecules. Through this screen, we identified several motifs that displayed separated electronic absorption bands of their isomers, exhibited red-shifted absorptions, and are suited for information transfer and photopharmacological applications. Our curated dataset, code, as well as all models are made available at https://github.com/Ryan-Rhys/The-Photoswitch-Dataset
翻译:光线下可以访问的可光学分子显示两种或两种以上的异构形式。分离这些异构体的电子吸收带是选择性地处理特定异构体和实现高光静态的关键,而总体的红色移动吸收带则限制紫外接触造成的物质损害,提高光制药应用的渗透深度。然而,通过合成设计将这些属性设计成一个系统,仍是一项挑战。在这里,我们为分子光电开关提供了一个数据驱动的发现管道,以数据集弯曲和多任务学习为支撑。在电子转换波长预测中,我们证明,使用四个光开关转换波长标签培训的多输出高斯进程(MOGP)能够产生最强的预测性能,与单一任务模型相比,以及从运作上超过时间的密度功能理论(TD-DFT),用于预测。我们通过筛选一个商业上可用的光开关分子库来验证我们拟议的方法。我们通过这个屏幕,我们确定了若干个可图解波长的多功能高斯进程(MOGOUP)过程,我们用四个光源转换波长的过程,通过四个光控转换波长的波段(MOGP-M-M)过程展示了我们的所有数据转换的模型,将数据转换成可展示成可移动的模型,将数据转换成可展示成可移动的模型,将数据转换成可移动的模型,将显示为可移动的流的模型,以用于用于用于用于用于用于进行吸收的流制成可感化的模型。